
TECHNICAL WHITEPAPER

—

Real-Time Streaming
in Big Data: Kafka and Spark
with MemSQL
 ​Nithin Krishna Reghunathan, Technical Evangelist

2020

Kafka and Spark with MemSQL

—

Table of Contents

Table of Contents 2

1. Introduction to Big Data Streaming 3

1.1 Challenges in Deploying Real-Time Streaming 4

2. Real-Time Data Pipelines for Streaming Applications 5

2.1 Kafka: A Distributed Streaming Platform for High-Throughput Messaging 5

2.2 Spark: Streaming Processing Platform for Data Transformation 7

2.3 Persistent Database or Datastore 9

3. Building Real-Time Data Pipelines with MemSQL 10

3.1 MemSQL Overview 10

3.2 How MemSQL Keeps Your Data Safe 12

3.2.1 Persistence, Data Durability, and High Availability in MemSQL 12

3.2.2 System of Record Capabilities in MemSQL 7.0 (and above) 13

3.3 Building Kafka Pipelines with MemSQL 14

3.4 Advantages of the MemSQL Spark 3.0 Connector 15

4. Customer Success Stories 17

4.1 Large Energy Company in US Using MemSQL for Preventative Maintenance 17

4.2 Major Financial Service Provider Improving Risk Management Performance

with MemSQL 19

5. Conclusion 22

2

Kafka and Spark with MemSQL

—

1. Introduction to Big Data Streaming

Data streaming can be defined as a continuous process of transferring data at a very high

rate of speed. The evolution of modern platforms such as the Internet of Things (IoT),

cloud computing, the Internet, and social media generate humongous amounts - on the

order of petabytes - of real-time data on a daily basis. This data has to be utilized in the

most effective way by leveraging the right streaming techniques so that businesses can

make data-driven decisions in real time.

The traditional approach of handling data is batch processing, wherein large volumes of

data are loaded in batches on a nightly, weekly, or other regular basis. Moving data

through in batches causes a significant lag in the availability of recently generated data for

data processing. Although batch processing is a common response to limitations in

hardware, software, and processes such as the time and effort required to check incoming

data for correctness, it doesn’t really work well for use cases that demand real-time

decision making capabilities. With data streaming, you can meet the demanding

requirements of such use cases.

In general, data streaming is ideal for data sources that stream data in small sizes (on the

order of kilobytes per second) in a continuous flow as the data is generated. This includes

a wide variety of data sources such as the Internet of Things(IoT), connected devices,

geospatial applications, web applications, real-time transactions in financial

trading/banks, e-commerce platforms, web-based applications, server log data, telemetry

or biomedical devices, social media such as Twitter and facebook etc. However, there are

more and more applications where users want to stream larger data flows, and these

applications challenge the capabilities of even advanced platforms such as Kafka, Spark,

and MemSQL.

3

Kafka and Spark with MemSQL

—

This streamed data is often used for filtering, sampling, or real-time aggregation and

correlation. The derived information from streamed data gives greater visibility for

companies to make business decisions that enable them to respond promptly to emerging

situations and changes in market conditions.

In this paper, we will discuss in detail two of the leading streaming platforms, Apache

Kafka and Apache Spark, and how well they complement the ​MemSQL​ ​database for

building real-time data pipelines.

1.1 Challenges in Deploying Real-Time Streaming

Data engineers and architects have to go through numerous challenges prior to

successfully deploying a real-time streaming platform. Some of the key challenges include

choosing the right development frameworks, non-deterministic delivery of data from

connected devices, scaling and performance, algorithm testing, data validation, and

life-cycle management.

A streaming data platform requires two layers: a processing layer and a storage layer. The

storage layer is primarily responsible for maintaining strong consistency to enable

high-speed, replayable reads and writes of large streams of data. The processing layer

consumes the data from the storage layer, runs computations on data, and notifies the

storage layer to delete the data that is no longer needed. In order to overcome these

challenges and ensure successful adoption of a real-time streaming application, the data

platform has to adopt a powerful tool that can deliver superior scalability, data

persistence, and fault tolerance in both the storage and processing layers.

4

https://www.memsql.com/resources/whitepaper-introduction_to_memsql_2019/

Kafka and Spark with MemSQL

—

2. Real-Time Data Pipelines for Streaming
Applications

The following layers play a major role in building a real-time data pipeline for streaming

applications: (i) A high-throughput messaging layer, (ii) A data transformation layer, and

(iii) a persistent data store/database.

Fig 1. Real-time data pipelines with MemSQL

2.1 Kafka: A Distributed Streaming Platform for
High-Throughput Messaging

With the evolution of real-time streaming, high-throughput messaging systems have

become an integral part of enterprise IT infrastructure. As enterprise companies start

putting more effort into building real-time data pipelines, high-performance messaging

systems (fast, scalable solutions) have gained momentum, especially for use in real-time

analytics.

5

Kafka and Spark with MemSQL

—

Modern, real-time data pipelines rely on high-throughput messaging systems to capture

data from a wide range of sources, including IoT-connected devices, financial trades, the

stock market, mobile applications, web applications, etc. This high-throughput messaging

system ensures that every data file is transferred to the destination with zero data loss.

The data is then written into databases for further processing.

Apache Kafka​ is a distributed streaming platform used for high-throughput messaging

applications. Kafka is used for building real-time data pipelines and streaming

applications. It is horizontally scalable, fault-tolerant, and wicked fast. It runs in

production across all industries. Kafka acts as a broker between ​producers​ (processes that

publish their records to a communications channel, which is called a topic) and ​consumers

(processes that subscribe to one or more topics). Kafka is capable of handling terabytes of

messages without any loss of performance, which is the reason it’s become the first

solution considered for building streaming applications.

Fig 2. Apache Kafka ecosystem

6

https://kafka.apache.org/intro

Kafka and Spark with MemSQL

—

Apache Kafka is primarily built with a distributed approach, so also to allow both the

producers and the consumers to scale out horizontally - that is, by adding more servers to

the cluster. In addition, Kafka’s efficient use of memory, along with distributed commit

logs stored on disk, ensures very high durability - as the messages persist on to disk as fast

as possible. These characteristics enable Kafka to deliver superior performance for

real-time applications.

More details on the fundamental concepts of Apache Kafka can be found​ ​at the official

Apache site for Kafka​.

2.2 Spark: Streaming Processing Platform for Data
Transformation

In a streaming application, the data transformation layer converts the raw data into a

meaningful format which is more usable for analytics and data exploration. The

transformation layer can do various other tasks, including such as filtering of data, data

aggregation, and data enrichment.

Apache Spark​ ​is one of the most popular stream processing platforms, designed for data

transformation and used across all industries. Spark is a distributed, memory-optimized

cluster computing framework that can add a great deal of value to real-time streaming

applications. Spark Streaming brings Apache Spark's language-integrated API to stream

processing, letting you write streaming jobs the same way you write batch jobs. It

supports several popular programming languages: Java, Scala, and Python. Spark also has

a native streaming library and programming interfaces that makes data processing and

transformation easier.

7

https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://spark.apache.org/streaming/

Kafka and Spark with MemSQL

—

Fig 3. Apache Spark ecosystem

Spark streaming lets you leverage the same code you use for batch processing, join

streams of newer data against historical data, or run ad hoc queries against the stream

state. You can build scalable, fault-tolerant, interactive streaming applications with the

Spark platform. While building real-time data pipelines, Spark does the transformation

part by extracting raw data from sources (such as Kafka), running machine learning

models or transforms on raw data, and then moving those enriched or augmented

datasets to a persistent database (or datastore) for further analysis.

One fairly widely-used feature of Spark which we should comment on here is Spark SQL, a

query language that you can use to query Spark streams. This query language is not ANSI

SQL, but instead is SQL-like. It doesn't do much of what true SQL does, nor does it benefit

from the decades of performance optimization that relational databases, which generally

support true SQL, inherit. Later in this whitepaper, we will describe SQL pushdown, which

allows the MemSQL database to efficiently execute commands that would otherwise be

run, more slowly and with more contention with other processes, in Spark SQL.

8

Kafka and Spark with MemSQL

—

More details on the fundamental concepts of Apache Spark can be found at the ​official

Apache site for Spark​.

2.3 Persistent Database or Datastore

Real-time data pipelines for streaming applications demand persistent database

technologies that are capable of handling high-throughput data capture, ingestion, and

processing. Some of the key characteristics shared by the streaming technologies used for

real-time applications include: (i) memory-optimized store for ultra-fast ingest, (ii)

distributed architecture capable of scaling out horizontally, (iii) real-time analytics

capability, and (iv) massively parallel processing capability.

Neither the Kafka platform nor the Spark platform offers any persistent storage engine

(e.g. database or datastore), which is why there arises a need for an operational database

which is capable of storing data in the form of objects or records, with very high durability

(meaning a very low likelihood of permanent data loss). An operational database must

ensure the following key things to empower any real-time application: (i) ​persistence​ -

saving all its information to disk storage for durability, (ii) ​high availability​ - data is always

highly available by maintaining a readily available copy of all data, (iii) ​fast failover ​ - fast

and automatic switching to the copy, without downtime, in case of any unexpected

hardware failures. A persistent database in a real-time data pipeline can be considered as

a permanent datastore from where we can access data instantly for a variety of use cases

such as real-time analytics, historical analysis, etc.

A memory-optimized operational database can manage and store real-time data in the

most efficient way. Moreover, it enables persistence for both real-time and historical data,

and the ability to query both within a single system. The data from the transformation

9

https://spark.apache.org/docs/latest/
https://spark.apache.org/docs/latest/

Kafka and Spark with MemSQL

—

layer can be rapidly ingested into a persistent database (or datastore) which is used as a

resource for deriving real-time insights on rapidly moving data.

3. Building Real-Time Data Pipelines with
MemSQL

3.1 MemSQL Overview

MemSQL is an operational database built for performing both transactions and analytics

to support the demands of modern applications, analytical systems, and AI and machine

learning at scale. MemSQL uses a cloud-native, distributed architecture to deliver

maximum performance and elastic scale. Note that "cloud-native" does not mean

"cloud-only"; in fact, "cloud-native" infrastructure and apps are completely flexible, being

able to run on any cloud or on-premises. MemSQL accomplishes this by offering both

multi-cloud and hybrid options, ranging from a database-as-a-service (​MemSQL Helios​),

to Kubernetes-based hybrid and private deployments (using the ​MemSQL Kubernetes

Operator​), to traditional on-premises installations on virtual machines (VMs) or

commodity hardware.

10

https://www.memsql.com/helios/
https://www.memsql.com/blog/introducing-the-memsql-kubernetes-operator/
https://www.memsql.com/blog/introducing-the-memsql-kubernetes-operator/

Kafka and Spark with MemSQL

—

Fig 4. MemSQL Architecture

MemSQL can ingest millions of events per second, with support for ACID transactions,

while simultaneously supporting ad hoc SQL queries, business intelligence (BI) tools, ,

applications, machine learning model queries, and AI queries on trillions of data rows. 1

MemSQL can support running transactional and analytical workloads with fast ingest and

while supporting high concurrency, all while supporting the standard ANSI SQL query

language. You can read​ ​this technical whitepaper​ ​for a deep dive into the concepts behind

the MemSQL data platform.

MemSQL’s database-as-a-service offering is called ​MemSQL Helios​.​ MemSQL Helios

gives you the full capabilities of self-managed MemSQL ​database software​ ​without the

operational overhead and complexity of managing it yourself. MemSQL Helios provides a

resilient database with cloud-agnostic deployment support on AWS and Google Cloud

Platform (with support for Azure coming soon, and others to follow).

1 MemSQL Processing Shatters Trillion Rows Per Second Barrier
https://www.memsql.com/blog/memsql-processing-shatters-trillion-rows-per-second-barrier/

11

https://img04.en25.com/Web/MemSQL/%7Bc524daed-12da-4dd0-a23f-67ea68e3472f%7D_Introduction_to_MemSQL___Technical_Whitepaper.pdf
https://www.memsql.com/helios/
https://www.memsql.com/
https://www.memsql.com/blog/memsql-processing-shatters-trillion-rows-per-second-barrier/

Kafka and Spark with MemSQL

—

With MemSQL Helios, cluster provisioning, cluster management, deployment, upgrades,

alerting, and troubleshooting are all handled by MemSQL. This greatly reduces

operational expenses, by shifting the database administration (DBA) tasks needed to

operate your database from your organization to MemSQL. Support interactions are also

simplified, and, for those questions which do arise, solving the problem is likely to be

faster and easier than with self-managed MemSQL software.

Just as importantly, MemSQL is offered at a price point dramatically lower than

traditional database vendors, while our ultra-efficient query engine means that

operational costs for MemSQL also tend to be lower than the proprietary offerings from

the cloud service providers - including open source offerings, for which the license

required to run the software is "free."

3.2 How MemSQL Keeps Your Data Safe

MemSQL is built with enterprise-ready durability features. The MemSQL architecture

enables organizations to keep their data safe without introducing latency. MemSQL has

three mechanisms for ensuring not only disk-based durability, but that your database and

business stay online: logs and snapshots to disk for durability, redundancy for high

availability, and cross-datacenter replication for disaster recovery.

3.2.1 Persistence, Data Durability, and High Availability in MemSQL

An operational database must have reliable persistence and high availability mechanisms

for the data. ​MemSQL​ ensures this persistence with its ability to store information

durably and resilient to any unexpected hardware failures.

MemSQL runs with full ​durability​ enabled. The transactions are committed to the

transaction log on disk and later compressed into full-database snapshots. If data needs to

be restored, the database software restores the most recent snapshot, then plays back the

12

https://www.memsql.com/product/

Kafka and Spark with MemSQL

—

logged transactions that occurred since that snapshot. This process is quite fast and does

not cause noticeable downtime. Hence, durability is ensured through persistent logs and

periodic snapshots.

MemSQL ensures ​high availability​ by storing a redundant copy of data within a cluster. The

paired leaf nodes replicate data to one another, and can be configured to do so as

synchronous replication​ - which is the safer method, and only adds a small performance

hit - or as asynchronous replication, which is even faster. When a leaf node goes offline,

MemSQL automatically fails over to its replication partner.

MemSQL supports fully automatic ​cross-datacenter replication​ that can be provisioned with

a single command. The secondary (replica) cluster stores a read-only copy of data

asynchronously replicated from the primary cluster. In the event of a major failure in the

primary cluster, MemSQL allows you to promote the secondary cluster, immediately

making it a "full" MemSQL cluster. In addition to providing disaster recovery assurance,

the secondary cluster can also be used to support heavy read-only workloads, which

enables higher performance for reads, which take place against a copy of the cluster that

is not actively being written to, and for writes - the "live" cluster, against which writes

occur, is made less busy by offloading many reads to the secondary cluster.

3.2.2 System of Record Capabilities in MemSQL 7.0 (and above)

System of record capability​ ​is the holy grail for transactional databases. Companies need

to run their most trusted workloads on a database that has many ways to ensure that

transactions are completed and to back up completed transactions, with fast and efficient

restore capability. MemSQL 7.0 (and above versions) includes new features that deliver

very fast synchronous replication – including a second copy which is made as part of the

initial write operation, atomically – and incremental backup, which offers increased

flexibility and reliability.

13

https://www.memsql.com/blog/webinar-recap-1-fast-distributed-synchronous-replication/
https://www.memsql.com/blog/replication-system-of-record-memsql-7-0/
https://www.memsql.com/blog/replication-system-of-record-memsql-7-0/

Kafka and Spark with MemSQL

—

With these features, MemSQL 7.0 offers a viable alternative for Tier 1 workloads that

require a system of record capability. When combined with the speed improvements and

operational efficiencies provided by ​MemSQL SingleStore​, and MemSQL’s long-standing

ability to combine transactions and analytics on the same database software, MemSQL

7.0 now offers unprecedented design and operational simplicity, lower costs, and higher

performance for a wide range of workloads.

3.3 Building Kafka Pipelines with MemSQL

MemSQL Pipelines​ is a built-in component of MemSQL database software. Pipelines can

extract, transform, and load external data, without the need for third-party tools or

middleware. MemSQL Pipelines is a native feature that natively ingests real-time data

from external sources. The Pipelines feature is robust, scalable, highly performant, and

supports fully distributed workloads.

MemSQL Pipelines can extract data directly from Apache Kafka. In addition, it can also

extract data from Amazon S3, Azure Blob, Filesystem, Google Cloud Storage, and HDFS

data sources.

Kafka and MemSQL share a similar distributed architecture that makes Kafka an ideal

data source for building real-time or near real-time pipelines with MemSQL. Kafka topics

can be paired one to one with MemSQL leaf nodes for very fast ingest, processing, and

availability of both new and historical data for analytics and apps.

Both Kafka and MemSQL support "​exactly-once​" updating, which ensures that data, once

placed in a Kafka topic, then processed by MemSQL, is neither lost, nor sent through or

processed more than once. MemSQL Pipelines natively support not only relational data,

but also the JSON, Avro, and CSV data formats, as does Kafka​.

14

https://www.memsql.com/blog/memsql-singlestore-then-there-was-one
https://docs.memsql.com/v7.0/concepts/pipelines/pipelines-overview/
https://www.memsql.com/blog/how-we-use-exactly-once-semantics-with-apache-kafka/

Kafka and Spark with MemSQL

—

To create and interact with a Kafka pipeline quickly, using the MemSQL Pipelines feature,

follow the instructions in this​ ​link​.

3.4 Advantages of the MemSQL Spark 3.0 Connector

Note:​ ​The MemSQL Spark Connector 3.0 is a beta release to be used for testing and

development, and is not intended for production use. The GA version will be available in

the near future.

The MemSQL Spark Connector 3.0 allows you to connect your MemSQL database to

Spark stream processing. Spark excels at iterative computation and includes numerous

libraries for statistical analysis, graph computations, and machine learning. However,

Spark SQL, as mentioned above, is not true ANSI SQL, and is not nearly as fast or efficient

at query processing as MemSQL.

There are two key data bottlenecks in Spark-oriented processing against other data layers

that the combination of the MemSQL database and the MemSQL Spark Connector 3.0

solves: (1) slow query responses and (2) slow data loads.

To address the first bottle neck: slow query responses, MemSQL Spark Connector

supports SQL pushdown - a feature which allows queries in Spark SQL to be

processed as native SQL queries in the MemSQL database, with great gains in

speed, and less use of system resources. As datasets grow in AI/ML scenarios, the

query execution efficiency and query optimization that MemSQL provides grow in

importance. Additionally, an order of magnitude performance gain is achieved

when the SQL queries being pushed down utilize MemSQL’s memory-optimized

columnstore with compressed data and segment elimination.

15

https://docs.memsql.com/v7.0/concepts/pipelines/kafka-pipeline-quickstart/

Kafka and Spark with MemSQL

—

The efficiency of your Spark SQL for ML training operations can be measured by

viewing the query plan used by invoking ​train.explain() ​ from your Spark shell.

This command shows the Spark execution tree for the query plan identifies where

SQL pushdown operations are occurring for each part of your Spark SQL

statement. Also, the MemSQL Spark Connector improves query performance and

query optimization on every Spark SQL statement. This is especially important in

multi-pass Spark SQL operations where a series of SQL statements are executed.

The performance gains provided by MemSQL for machine learning algorithms

which perform multi-pass data querying can be as much as 100x faster. This

performance advantage compounds with the number of passes of the algorithm.

The MemSQL Spark Connector can also address the second data bottleneck: slow

data loads. By taking advantage of the fact that both Spark and MemSQL are

distributed, the Spark Connector makes multiple, parallel connections to

MemSQL’s multiple data nodes, called Leafs, to read data which vastly improves

throughput for MLOps scenarios. This allows your distributed Spark cluster to

execute parallel reads directly against each of the distributed data nodes in the

MemSQL cluster. This provides another order of magnitude performance increase.

You can leverage MemSQL and Spark together to accelerate workloads by taking

advantage of computational power of Spark in tandem with the fast ingestion, persistent

storage, fast query processing, and high concurrency for queries from multiple sources

that MemSQL has to offer.

The Spark connector is implemented as a native Spark SQL plugin and supports Spark’s

DataSource API.​ The ​Spark connector makes it possible to integrate Spark with MemSQL

for a wide range of use cases, such as a real-time data analytics pipeline, scoring machine

16

Kafka and Spark with MemSQL

—

learning models, predictive analytics etc. The MemSQL Spark Connector 3.0 supports

both data loading and extraction from database tables and Spark DataFrames.

Please check this​ ​link to learn​ more about - how to configure and start using the MemSQL

Spark Connector 3.0.

You can download the Spark Connector 3.0 from its​ ​GitHub repository​ ​and from ​Maven

Central​.​ The group is​ ​com.memsql​ ​and the artifact is ​memsql-spark-connector_2.11​.

Finally, check out the Spark Connector videos on ​MemSQL’s YouTube Channel​.

4. Customer Success Stories

4.1 Large Energy Company in US Using MemSQL for
Preventative Maintenance

Use Case

A large energy company uses MemSQL for upstream processing, which is a solid use case

of predictive analytics in a machine learning application. The company delivers preventive

maintenance for their oil drills across the globe, including expensive drill bits, using this

data platform. The preventive maintenance approach helps them to reduce failures and

avoid breakdowns to their equipment.

Problem Statement

Design a highly scalable data platform which is capable of continuously ingesting raw data

from a variety of sensors and which allows predictive machine models to run in parallel to

determine the scoring for oil drill health, all in real time.

17

https://docs.memsql.com/v7.0/guides/client-and-application/third-party-integrations/spark-3-connector/
https://github.com/memsql/memsql-spark-connector/tree/3.0.0-beta
https://search.maven.org/artifact/com.memsql/memsql-spark-connector_2.11
https://search.maven.org/artifact/com.memsql/memsql-spark-connector_2.11
http://www.youtube.com/memsql

Kafka and Spark with MemSQL

—

Key Considerations for Using MemSQL

● Can query while ingesting data

● Highly scalable

● Ultra-fast ingestion

● Massively parallel processing data architecture

● Performs ML scoring and data ingestion in parallel

Reference Architecture for Predictive Maintenance

Oil drills are deployed across different locations around the globe. These drills are

equipped with various sensors (such as vibration, direction, and temperature) and

generate data continuously. The raw data generated gets pushed into a Kafka queue as a

first step. Data is then pulled from the Kafka queue into a Spark cluster, where a

Predictive Model Markup Language (PMML) model calculates the health of a drill based

on real-time data. The scored data then lands in MemSQL to power a real-time

operational dashboard, where the drill operators can make informed judgments based on

events or anomalies detected by processing real-time data.

Figure 5. Reference Architecture for Predictive Maintenance

18

Kafka and Spark with MemSQL

—

Positive Business Outcomes and Benefits with MemSQL

The following benefits and positive business outcomes are achieved by using MemSQL as

part of the solution.

● Maintain Equipment Uptime​.​ ​Analyze millions of equipment condition readings

and event updates, with real-time monitoring

● Reduced Operating Costs. ​Analyze millions of equipment conditions and events

with real-time monitoring

● Predict Failures. ​Prevent high-risk conditions with real-time predictive scoring

● Real-Time Visibility.​ ​Each department/region now has the ability to assess current

business and oil production to forecast budgets from their computers or mobile

devices - at any time of the day

● Strong earnings and profitability​. ​as shown in their market capitalization and stock

price

4.2 Major Financial Service Provider Improving Risk
Management Performance with MemSQL

Use Case

In this customer success story, we describe how one of the major financial services

providers in the US was able to successfully improve the performance and ease of

development of their risk management decision-making system with MemSQL.

Problem Statement

Design a solution to meet the growing concurrency and performance requirements for

their risk management decision-making system.

19

Kafka and Spark with MemSQL

—

Key Considerations for Using MemSQL

The following considerations helped to drive the use of MemSQL as part of the solution:

● Scalable. ​The underlying database used must be highly scalable, so as to provide

arbitrarily large capacity wherever needed.

● Streaming-ready. ​Ability to integrate easily with streaming platforms like Kafka

and process this high-velocity data in a smart and efficient way.

● Flexible.​ Ability to deploy in any public cloud, on-premises, in a container or virtual

machine, or in a blended environment, so as to mix and match strengths as needed

to meet requirements.

● High concurrency.​ The database powering analytics must support a large number

of simultaneous users, with good responsiveness for all.

● SQL compatibility.​ Scores of popular business intelligence tools involved in the

decision-making systems use SQL.

● Real-time analytics. ​Ability to operate on rapidly moving data (“query while you

ingest”) is crucial for the decision-making system.

Reference Architecture

In order to meet the business requirements, the company implemented the newly

simplified architecture (Fig. 5) by leveraging the following modern solutions:

● Kafka as a high-throughput messaging platform.​ The company standardized on

Kafka for messaging, speeding data flows and simplifying operations.

● Analytics database consolidation to MemSQL.​ A single data store running on

MemSQL was chosen as the engine and source of truth for analytics.

● Spark as a data transformation layer​. Data scientists leverage the power of

MemSQL and Spark together for data exploration.

20

Kafka and Spark with MemSQL

—

Fig 6. Reference architecture for risk management

Before MemSQL, multiple (ETL) processes moved data between the operational database

and the analytics data warehouse, which added to the overall data latency and complexity.

Other ETL processes are also typically used to load additional data sources into the data

warehouse, adding more delays. After implementing MemSQL, the Kafka cluster streams

all the data into one MemSQL database instance for analytics, and also into a second

database instance which serves as a performant data science sandbox. The Hadoop/HDFS

data lake, serving as long-term cold storage, retains all the data. This Hadoop data lake

was a dedicated platform for data science-related activities on cold data, with data

scientists being the primary users.

With MemSQL, the customer was able to load data in as soon as it became available,

rather than doing batch uploads on a nightly basis (the “before MemSQL” approach).

21

Kafka and Spark with MemSQL

—

Using MemSQL led to better query performance, with query results that include the latest

data, not only historical data, as had been the case previously. The customer has achieved

greater performance, better uptime, and simpler application development. Risk managers

have access to much more recent data. Also, users were able to achieve sub-second

response time for complex analytic queries. The risk management users, analytics team,

and data scientists shared a wide range of benefits after implementing MemSQL.

Positive Business Outcomes and Benefits with MemSQL

The following benefits and positive business outcomes accrued from using MemSQL:

● Dramatic cost savings due to the need for fewer servers and compute cores, and

less RAM

● Less coding and less complexity for new apps

● Lower TCO

● Cloud connectivity and flexibility

● More analytics users supported

● Ultra-fast analytics on streaming data

● Augmented data science results

Please refer to this detailed ​case study link​ to learn more about this customer success

story.

5. Conclusion

Modern organizations have started adopting a data-driven approach to improve their

business performance and decision-making capabilities while achieving enhanced

customer experience. Agile businesses need to implement real-time data pipelines so

decision makers can refine strategies quickly. Streaming real-time data pipelines can play

a major role in achieving this goal by providing instant access to analytics, run against

22

https://www.memsql.com/blog/case-study-improving-risk-management-performance-memsql/

Kafka and Spark with MemSQL

—

real-time data. An operational database connected to a real-time data pipeline must be

capable of delivering real-time insights and experiences through operational analytics.

The reference architectures mentioned in the previous chapters refers to a widely

accepted approach to build real-time data pipelines across all the industries. The most

common data pipeline approach followed by our customers includes: (i) Kafka - as a

high-throughput message broker, (ii) Spark - as a transformation layer that can process

and enrich the data in micro batches, and (iii) MemSQL - as an operational database that

can deliver ultra-fast and highly scalable data reporting and analytics across all of your

operational data, to include streaming real-time data and historical data.

The customer stories discussed showcase how well our customers are leveraging

MemSQL with modern streaming technologies like Kafka and Spark for successfully

building real-time data pipelines. Adopting a data-driven approach with MemSQL can

drive successful business performance, which is something enterprises are constantly

striving to achieve.

● Download and experience our on-premises free trial version at

https://www.memsql.com/download/
● With MemSQL Helios (database-as-a-service) now publicly available, we hope that

you can experience it for yourself, and share your success story. Test drive

MemSQL Helios at ​memsql.com/helios

23

https://www.memsql.com/download/
https://www.memsql.com/helios/

